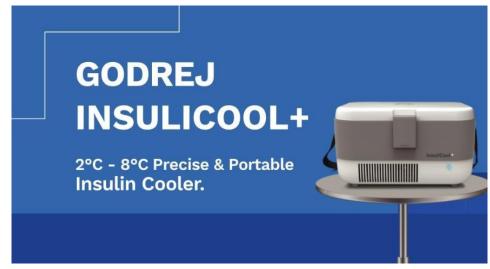
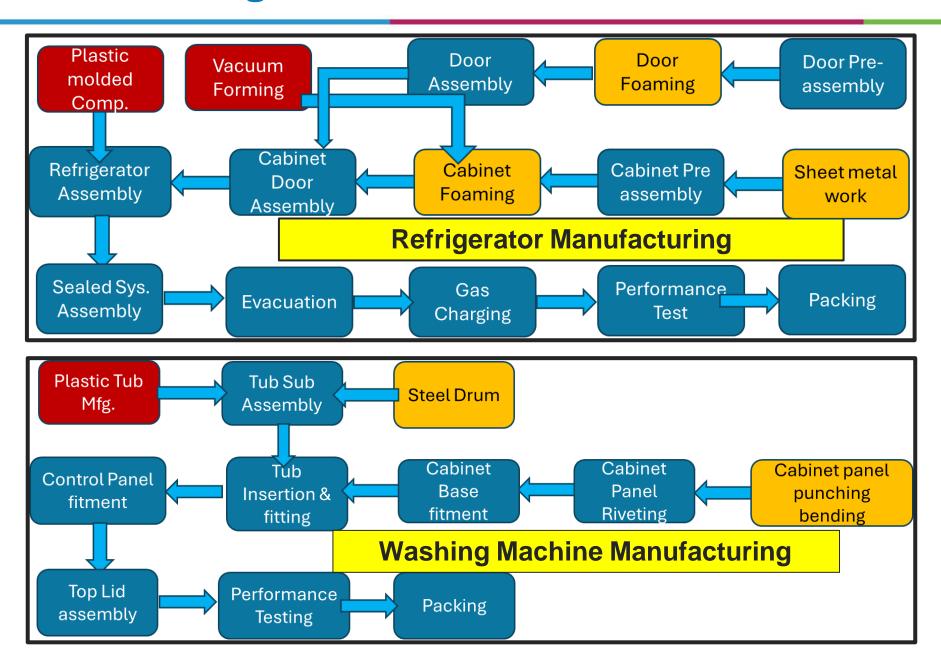


Godrej & Boyce Mfg. Co. Ltd., Appliances Division, Shirwal

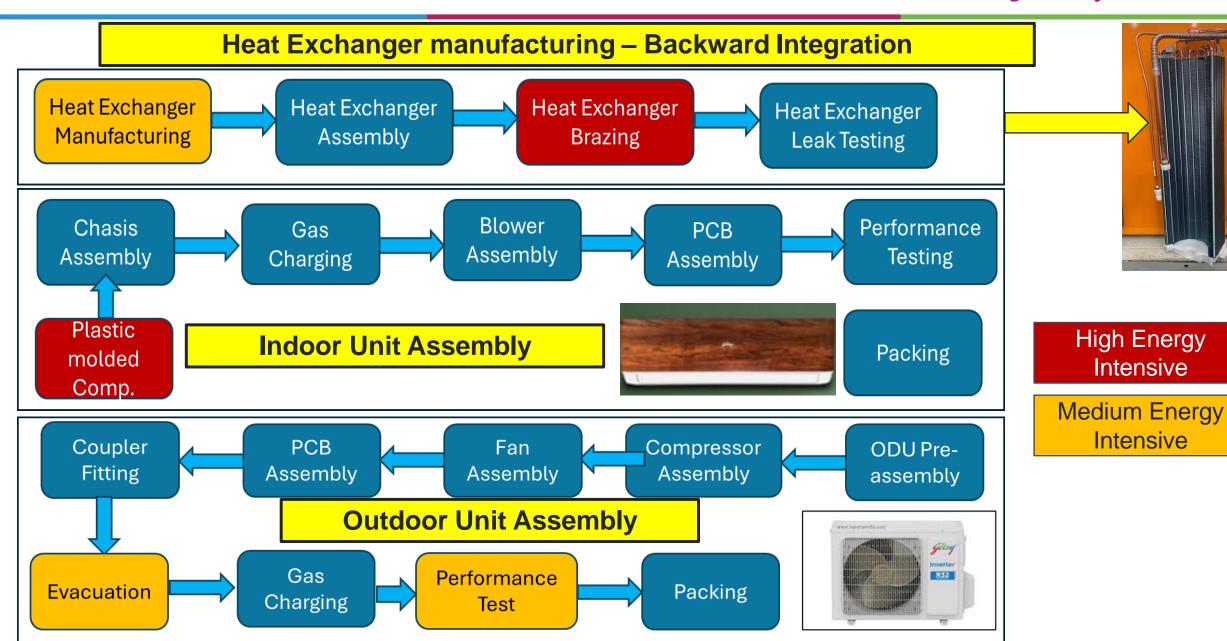

Prasad Pendse – General Manager

Company Profile

Flagship Division of Godrej & Boyce Mfg. Co. Ltd.

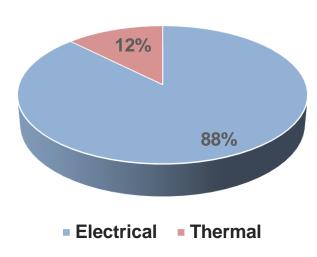


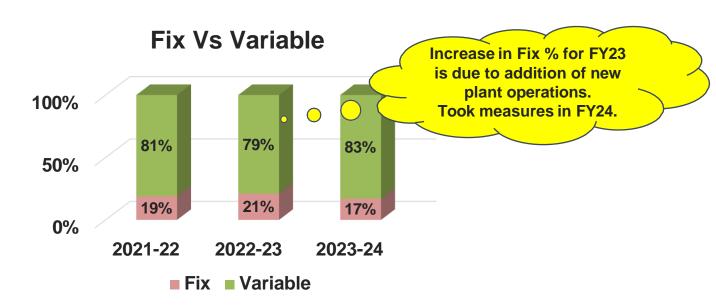
Manufacturing Processes - Ref. & Washer

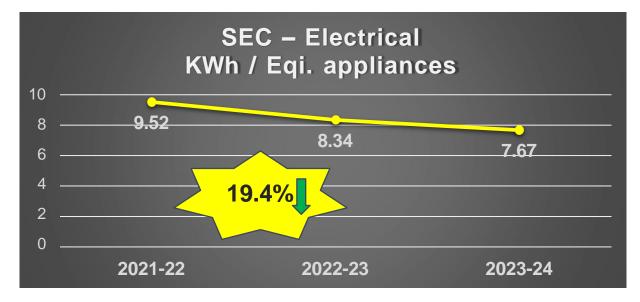


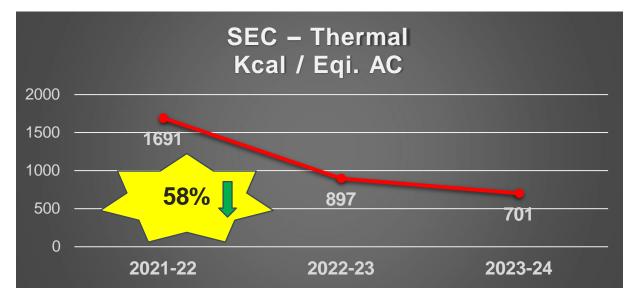
High Energy Intensive

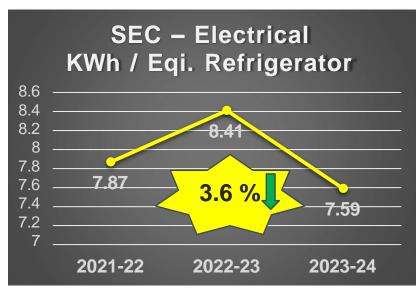
Medium Energy Intensive

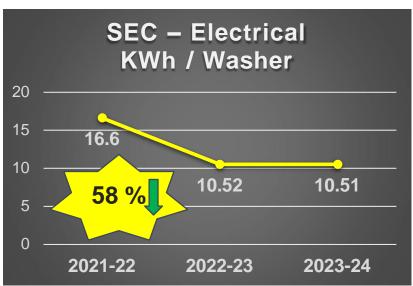


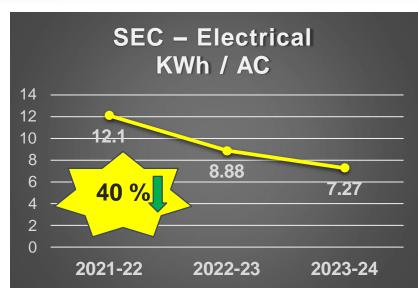


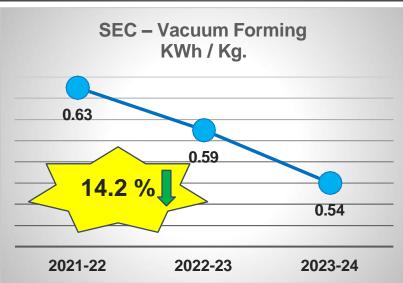

Energy Consumption & SEC

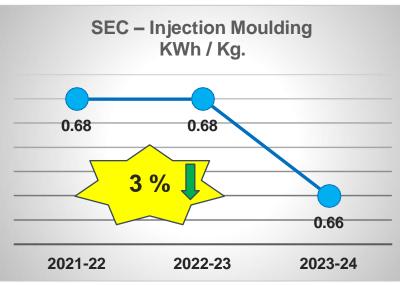


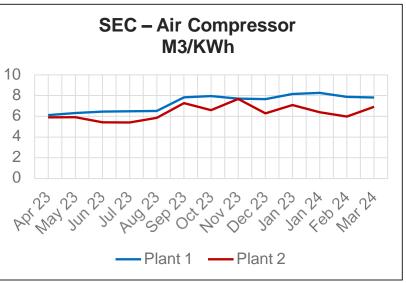


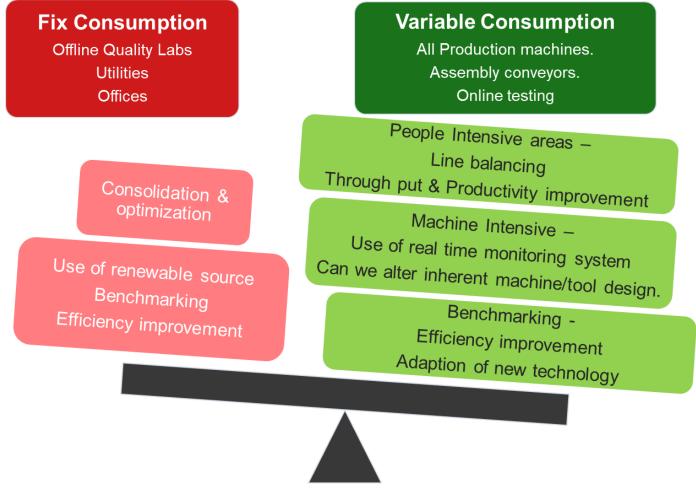





SEC Cascading – Product & Department wise

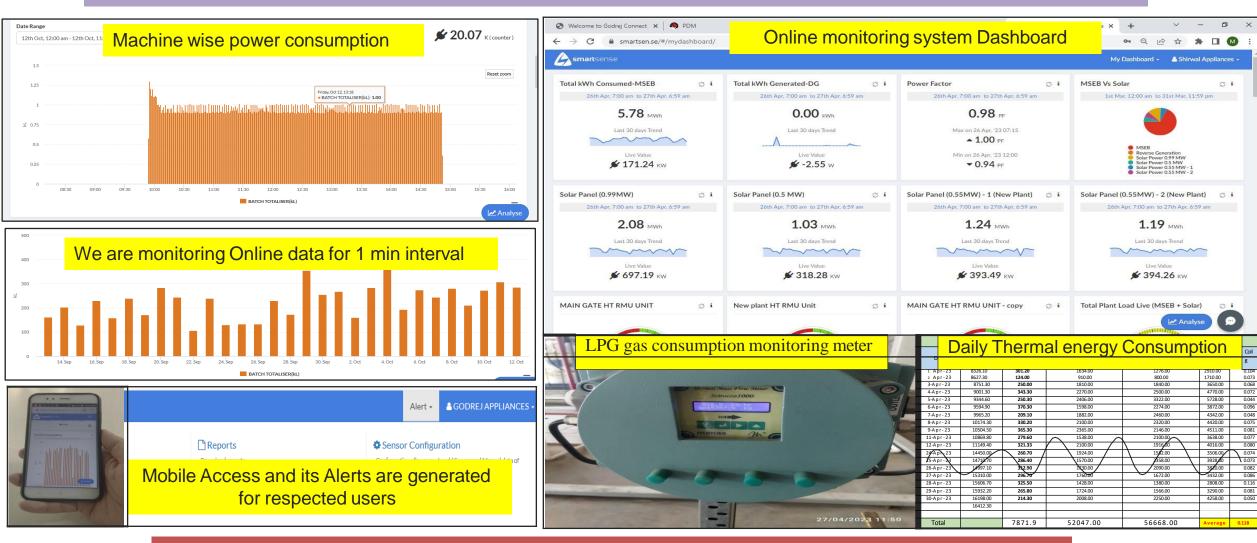






Daily monitoring of High-Power consuming departments for gap analysis

Approach



- > Precise measurement, monitoring & analysis.
- > Continuous working to make consumption variable.

Energy Monitoring System

Advance Digital Dashboard for Electrical & Thermal Energy monitoring.

Real time data monitoring helps for daily variance analysis

Encon Projects - Summary

		Annual Electrical	Annual Electrical Cost		Investment in Rs
Year	Title of project/ Comments/ project Details	Saving (KWH)	Saving (Rs million)	(Rs Million)	Millions
	Infrared barrel heater to be used on Italtech 1200T,1600T & 800T-1	30222	0.300	0.300	0.6
	Reducing energy consumption for forklift battery charging by use of				
	smart charger	28889	0.286	0.286	0.85
FY 2021-22	New plant Cooling tower Energy optimization by installing electrical				
	actuator valve in heat exchanger water line and automatically Flow				
	controlling by using VFD	16000	0.159	0.159	0.2
	Air dryer Interlocking with Compressor selection to eliminate running of				
	one dryer when demand is low	7200	0.071	0.071	0.05
	Reducing energy consumption for forklift battery charging by using new				
	smart charger.	20000	0.2066	0.207	0.29
	Latelland and Italian 200T 4 'c'art's and I'm and I'm	05000	0.05005	0.050	4.5
	Install servo motor on Italtech 800T-1 injection molding machine.	25000		I	1.5
FY 2022-23	Reduce Electrical power consumption on Ref. Powder coating Oven.	101365	1.04710045	1.047	Ų
1 1 2022 20	Install 250cfm compresor On new plant and eliminating 500cfm	400075	4 40404075		
	compressor runing	106875			<u> </u>
	Plant lighting to LED/Induction Lamp at Sheet Lamps	8760	0.0904908	0.090	0.3
	To reduce compressed air consumption by reducing air leakages below	40046	0.4004000	0.400	
	3 % . (tracing and arresting air leakage)	12240	0.1264392	0.126	Ч
	Installation of Atlas copco make Screw Vacuum Pumps on QS Liner	45070	0.400560000	0.400	2.04
	thermoforming machine to save enrgy	45078	0.498562680	0.499	2.04
E)/ 0000 04	Removed brush motor at Door Foaming machine by modtification in	0.4000	0.070057000	0.070	0.005
FY 2023-24	system	24960	0.276057600	0.276	0.065
	VED installation to vano vacuum nump	19968	0.220046000	0.221	0.09
	VFD installation to vane vacuum pump . HVLS fans installation (7 Nos)	133000			1.05
	ILA I I I I I I I I I I I I I I I I I I	133000	1.470980000	1.471	1.05

	Numbers	Savings in Lacs KWh	Investment in Rs Millions
Technology Upgradation	13	3.44	5.39
New Equipment Purchase	4	2.34	3.54
Efficiency Improvement	18	5.65	1.98
Total	35	11.43	10.92

Encon Projects 24-25

Sr.No	Project Name	Machine Name	Estimate Cost(Lacks)	Expected saving in KWh(Year)	Potential Saving(Lacks/Y	/ear Payback Period			
1	Centralised vacuum system.	VF1,VF6 & VF2	25	50400	5.4	4.61			
2	Black heater to VF machine.	VF1	20	10920	1.2	17.02			
3	Elimination of chiller.	QS Door Panel	15	29000	3.1	4.81			
4	Chiller uses optimisation.	QS liner machine	10	72000	7.7	1.29			
5	Servo motor VF rotary machine.	VF4	9	3360	0.4	24.89			
7	Air booster elimination.	Old QS	3	27648	3.0			Annual	Investment
8	Sheet pick up vacuum valve replacement.	Hana Door & Side Panel	3	24	2.6	Title of project	ct/ Comments/ project Details	Electrical Saving (KWH)	in Rs Millions
9	Installation of Infra Red temp.sensor	VF08(L4 PDP machine)	3	315	0.8	Cooling Tower Eff	ficiency Improvement	24000	1.5
6	Oven room heater modification.		5	ှိO ၁112	0.6	Ontimisation of He	eater distance in Vacuum Forming		
10	Servo motor installation on Head carriage.		57	1980			sater distance in vacuum i omining	65000	0
11	Servo motor installation on Load/unload carriage.	CF3	next 3	1980	0.2	for quick heating 2 Stage Screw Co	ompressor with PMV motor for	65000	0
12	Servo motor provision for hydraulic power pack	, 40	2 <mark>/ //</mark> 8	4500			ement in Compressor Area	150000	3.5
13	Heat pump provision on CF machine.	Cipo 1	8	12525	1.3	Installation of Atla	is copco make Screw Vacuum		
14	Servo motor installation for jig up/down	atities	35	10560			er thermoforming machine to save		
15	Servo motor installation for Refilling operation on Italtech 1600T & barrel heater by providing the Induction heater in place of ceramic heater Servo motor & pump system installation press	VF08(L4 PDP machine) CF3 CF3 CF3 CF3 CF3	25	37320	4.0	enrgy		45078	2
	Servo motor & pump system installation				-		llation at 200 T Press	10000	1.5
16	1.000	200T press	8	7497.8	-	HVLS Fans – 7 N		133000	1.5
17	Improved Cooling tower efficer Leing of Fills	Cooling Tower	5	54000	5.8 F		efilling operation on 1600T Press efilling operation on 1200T Press	50000 40000	2.00
18	Used Cooling tower wate machine hyrdulic oil cooling	QS FAFL machine	4	6600		Total	Timing operation 12001 1 1000	517078	14
19	To reduce the energy cost of oil cooling Motor by replacing IE1 to IE4 rating	Italtech machine	3.5	15750	1.7		Projects identified for	FY 24-25	
20	2 Stage Screw Compressor with PMV motor for Efficiency improvement in Compressor Area	Compressor Room	30	56700	6.1	4.92			
22	To reduce the energy cost loading Motor by replacin g	is alloc	ated in	n 3 vear	's and	annual	Business Plan		
24	Use of Adsorbtion Chiller	premix area	4.2	IUDUU		.3 40			
	recovery from air compressor		1.0	10000	1.1	0.00			
25	Wind turbin	Plant 2	4.5	4100	0.4	10.20			

50.1

4.90

245.7

465629

Target Setting

Target Setting							
Energy	FY 2023-24	Short Term 2025-26	Mid Term 2028-29	Long Term 2031-32			
Electrical (Kwh/Equi Appl.)	7.67	6.90	6.21	5.59			
Thermal (kgs/Equi AC.)	701	665	632	600			

Benchmarking

Internal Benchmarking

• Within plant, with Mohali plant, with other G&B plants. Trend, common applicable projects & best practices.

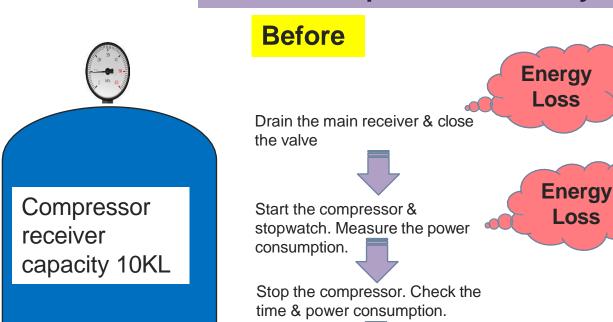
External Benchmarking

Competitor – Sustainability report, publications, equipment suppliers.
 Other Industries – Best Practices, Utilities, Common processes like injection molding, press shop etc.
 GreenCo EE score – We have benchmark score

Process & Equipment Benchmarking

- Efficiency improvement, to know gaps, best in class technology available, new purchases
- >Introduction of Benchmarking score
- Purpose Comprehensive evaluation of equipment/process & To make it more objective.
- Easy to understand what is the level of our machine wrt best in class.
- It becomes easy to explain the differences to Senior management & seeking decision.
- We can decide priority for upgradation of equipment / process.

Benchmarking Score – Vacuum Forming


Sr. No.	Benchmarking parameter	Godrej	Best in Class	Godrej Score (Scale 1-10)	Priority & Remarks
1	Make	QS	QS/Comi/Kiefil	9	
2	Heating elements	Ceramic Infra-red heaters	Black infra-red heaters/Quartz	<mark>9</mark>	Priority 4, Feasible
3	Heater Controls	PID Control	PID Control	10	
4	Heating stations	Two	Two	10	
5	Hydraulic motors	Induction motors IE3	Servomotors	8	Priority 3, feasible
6	Vacuum Pump	Vane Pump	Screw vacuum Pump	8	Priority 2, Feasible
7	Transfer drive motor	Servo motor	Servo motor	10	
8	Forming station motor	Servo motor	Servo motor	10	
9	Heating and cooling unit	Servo controlled	Servo controlled	10	
10	Balloon Formation	Compressed Air	Vacuum	<mark>7</mark>	Priority 1, Not feasible
	Total Score			91/100	
	Score in percentage			91%	

It helps to identify projects & decide priority

Encon Project – Efficiency Improvement

Air Compressor efficiency monitoring without energy loss

Calculate the CFM of

Calculate compressor specific power consumption & efficiency.

Pump down method

Energy Loss:-109 Kwh

compressor.

After

Open the valve & insert the probe into the air line port.

Do the probe adjustment as per the line size.

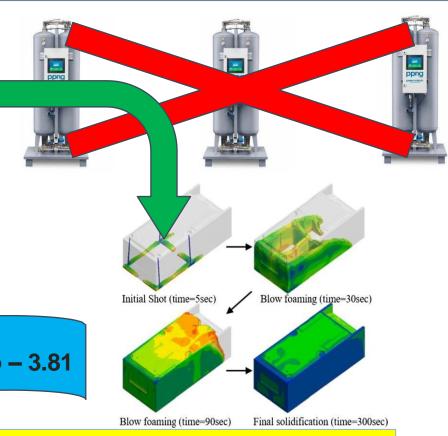
Check the compressor flow reading on display.

Check the power consumption on smart sense devise.

Calculate compressor specific power consumption & efficiency.

Online monitoring Energy Loss:- 0 Kwh

Encon Project - Consolidation

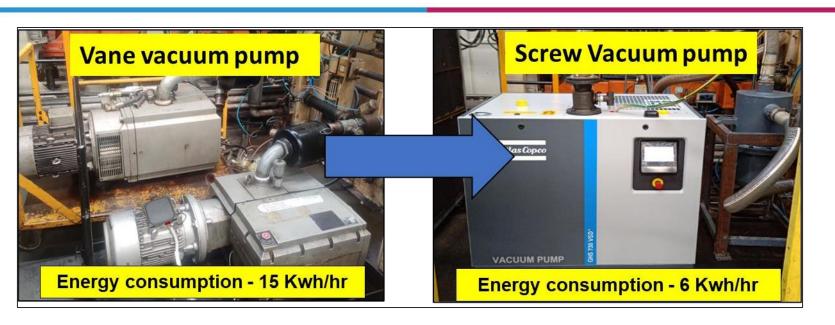


N2 Plant for AC mfg.

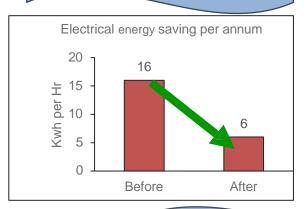
- 1. N2 Plant capacity is 50 m3/hr,
- 2. Actual consumption is 39 m3/hr.
- 3. Working principle Adsorption process.
- 4. Input is compressed air.
- 5. Air/N2 ratio is 8.45
- 6. Designed is 3.5

Air / Nitrogen ratio - 3.81

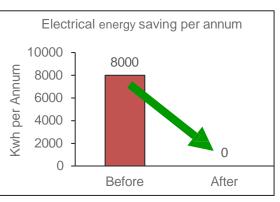
Three N2 Plants for purging of refrigerator cabinet before foaming



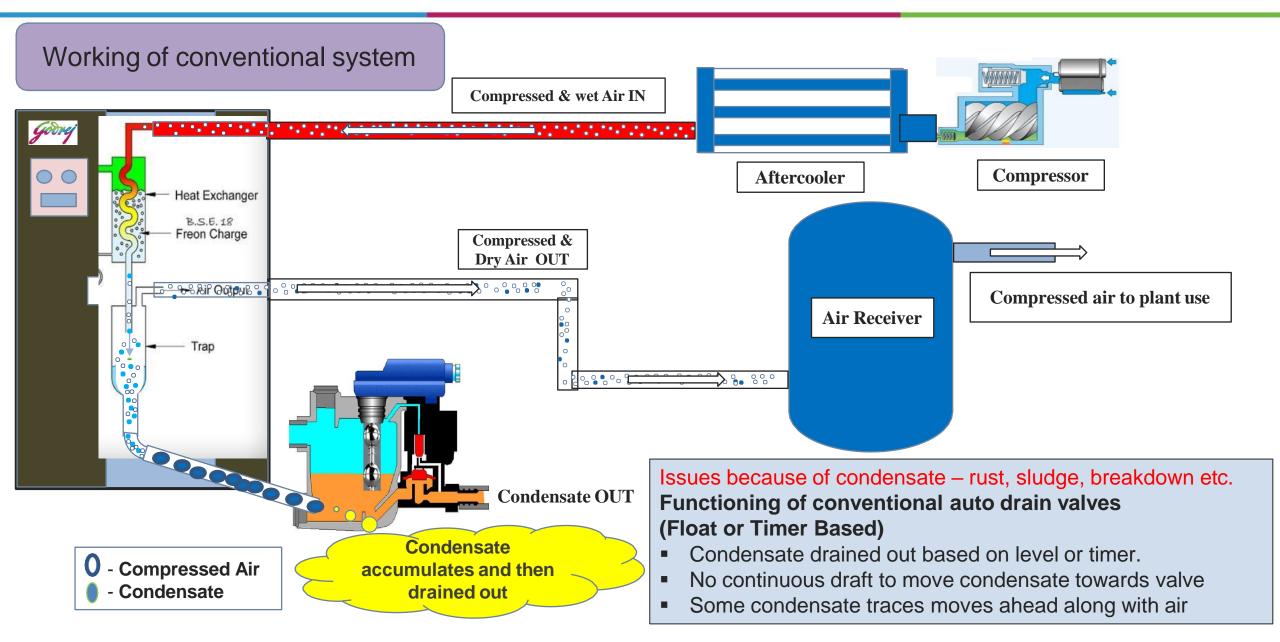
Every manufacturer keeps some additional buffer


Consolidation of processes and remove buffers to improve efficiency

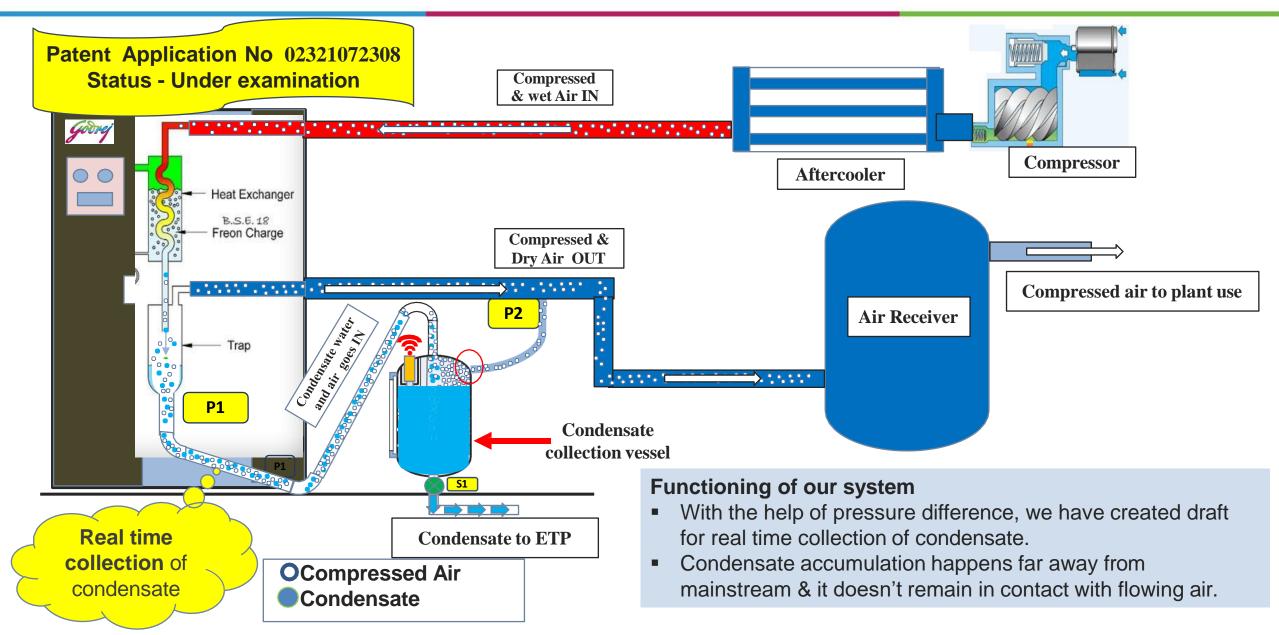
Encon Project – Technology Upgradation

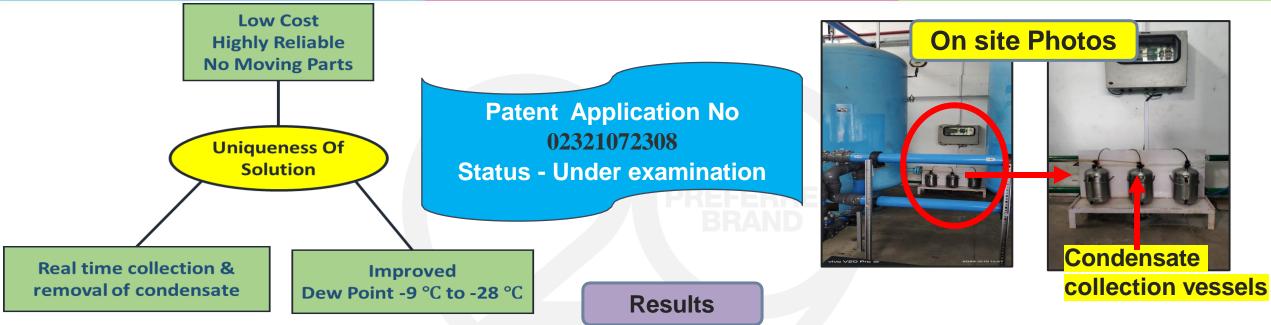


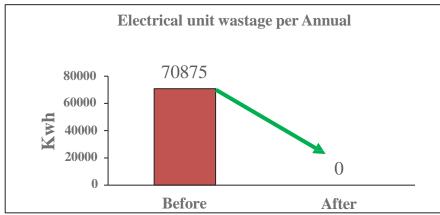
Adaption of new technology

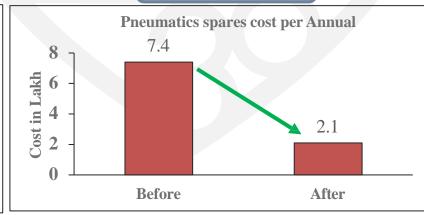


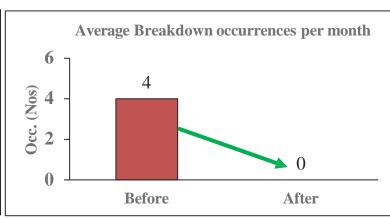
Inhouse development


Innovation


Zero air loss condensate drain system





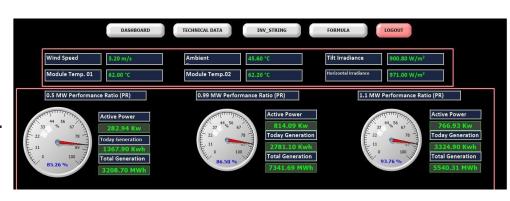

Uniqueness & Benefits



Replicability is very high across all industries & easily adoptable in existing set up

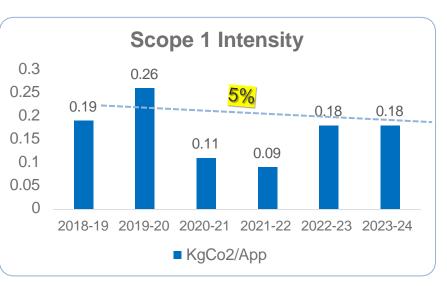
Utilisation of RE sources

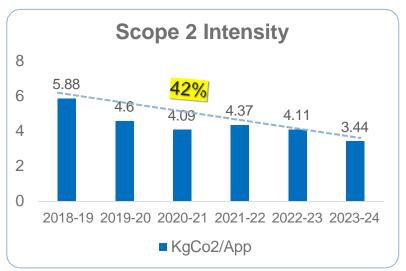
Safety & Easiness for cleaning ensures effectiveness

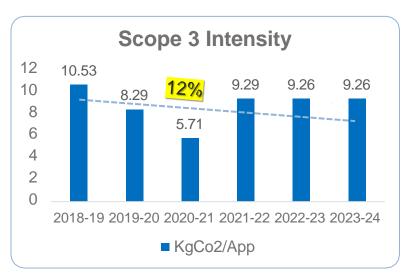

Beyond Generation Monitoring

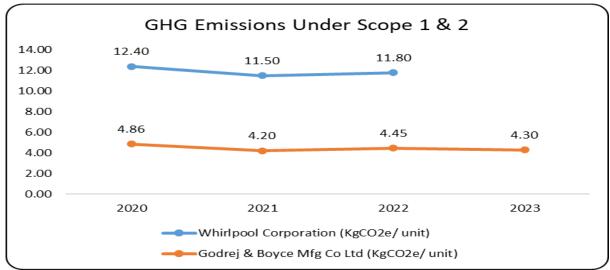
Online Monitoring system features

- > Site specific plant performance calculation.
- > Theoretical generation is calculated considering actual irradiance.
- Going deeper for generation monitoring Inverter wise to string wise.
- > Location of panels on roof is mentioned on the screen.
- Helps in Quick troubleshooting & higher generation.



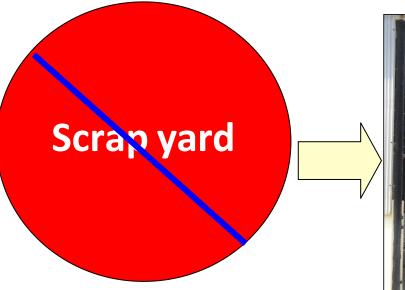





GHG Intensity & Benchmarking

- ☐ References : Sustainability reports 2022 of Competitor.
- ☐ Data and parameters used may not be directly comparable due to location-specific differences.

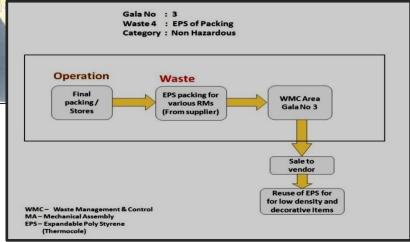
Target Setting – Short Term & Long Term


			Short Te	rm Targets	Mid term Targets	Long Term Targets	
Indicator	Corporate Target 2032	GAD Target 2032	2023-24 Achievement	2024-25	2025-26	2027-28	2031-32
Scope 1 & 2 (kg / Appl)	1.78	1.78	3.66	3.6	3.5	2.89	1.78
% Reduction plan on base year 2022-23	60%	60%	17%	19%	21%	35%	60%
Scope 3 (kg / Appl)	-	6.50	9.2	9.01	8.73	7.80	6.50
% Reduction on base year 2022-23	-	30%	1%	2%	6%	16%	30%

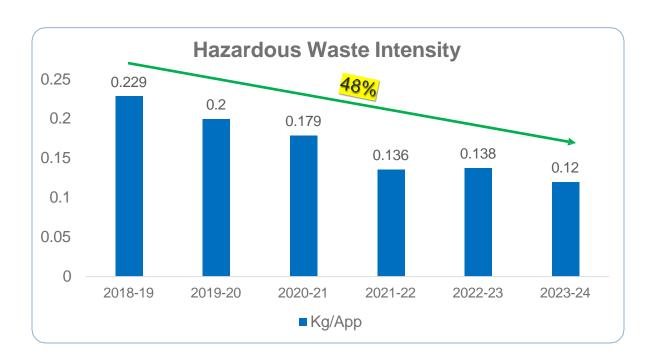
- ☐ Target to achieve 60% percentage reduction in specific GHG emission till 2031-32 under scope 1 & 2 .
- ☐ An aggressive target of 30% reduction at GAD level in Scope 3 by year 2032.
- ☐ Achievements against Targets are monitored on monthly basis and Targets are reviewed every year.
- ☐ Action Plans rolled out to align with the short term, mid term and long term targets.

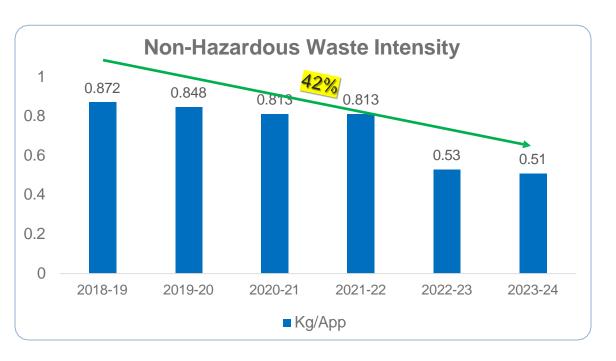
Waste Utilisation & Management

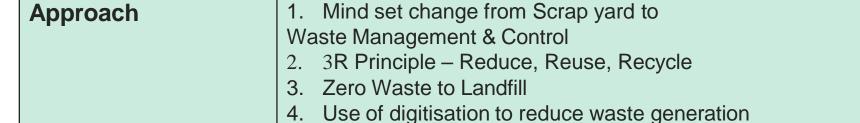
Change in mindset



Waste Management & Control

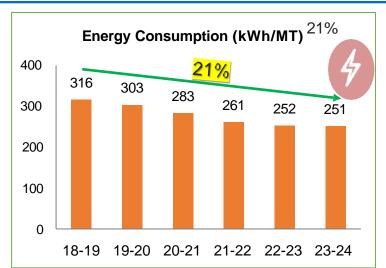

- Mindset change
- Professional view
- •Departmental Approach Mini workshop
- KRAs & Goals for respective supervisor
- Many recycling projects initiated because of this approach

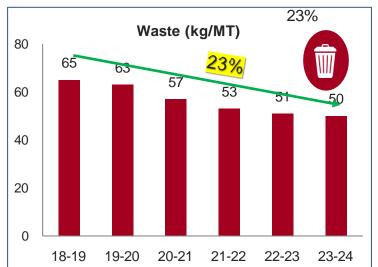

Change of mindset from Scrap Yard to waste management area enhance the people orientation towards waste handling

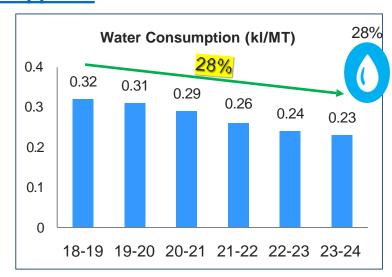


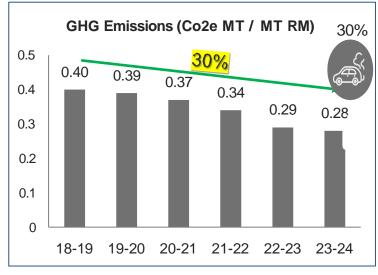
Waste Intensity Reduction

Green Supply Chain




Uniqueness & Guiding Principles


Uniqueness **Guiding Principle** Treat suppliers as extension of our No external consultants own manufacturing facilities hired Share & disseminate the learning's A separate vertical created from Godrej Operational Supplier Improvement Excellence Implementation of Lean Cluster philosophy Manufacturing Techniques at SME plants Coming Together.... Learning Together.... Practicing Together.... **Progressing** Aimed at up gradation of Together **SMEs**


ROADMAP FOR GODREJ SUPPLIER CLUSTER DELIVERABLES Reduction in throughpu Cellular manufacturing PRODUCTIVITY IMPROVEMENT mprovement in labour Multi-tasking CTQ mapping Concept of 100% inspection Reduction in rework (inprocess) Zero defects at customer end Quality Alert boards Measure cost of Poor Quality 7 QC tools + QC story QUALITY CP/ CPk studies Poka Yoke Calibration SOP creation Mapping and monitoring efficiency of-Reduction in Energy nergy **GREEN** Reduction in all type of Waste RoHS compliant products and Step 0 to 2 **MY MACHINE** eakdown reduction trend 15 / 25 1S score worksheet Red Tag campaign Zero red tag items Fixed point photography Before / after photos Jogging track Boundary walls clear Department Safety Score (DSS), Frequency / Severity rate, No. of accident free days 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Environmental Performance of Critical Suppliers

Green Supply Chain

Key Strategies for Leadership Development

Enhancing Leadership in Green Supply Chain Development

Embedding Sustainability/ into Programs

Integrate eco-friendly practices into leadership training to align with green supply chain goals.

Supplier Engagement Program

- Continuous improvement
- Build robust systems at supplier end

Promoting Transformational Leadership

Encourage leaders to inspire positive change towards sustainable strategies and innovation.

Supplier Cluster Program

- For Inculcate culture of operational excellence
- For Balance manufacturing growth & clean environment

Leveraging Digital Tools for Transparency

Utilize technology for real-time monitoring of environmental impacts and transparent decision-making..

Education Material on Supplier e-Buy Portal

- Perform & maintain end to end supply chain transaction
 : ERP - INFOR LN
- Buy Portal for suppliers to view important information on various parameters

Incorporating GreenCo
Metrics in Evaluations

Assess leadeís based o→ E→::iío→ıme→ıťal, Social, æl Go:eí→ıa→ıee eíiťeíia ťo díte íespo→ısible actio→ıs.

GreenCo Certification

- Greenco implementation emphasis on reduce resource intensity
- Enhance the Green Image & competitiveness

Encouraging Continuous

Learning

Foster a culture of adaptability and ongoing education to keep pace with evolving sustainability practices.

Participation in External Forums

Encourage suppliers to attend events, conferences & participate in external competitions

Net Zero Commitment

Climate Group - EP100

Signed Net Zero Mission

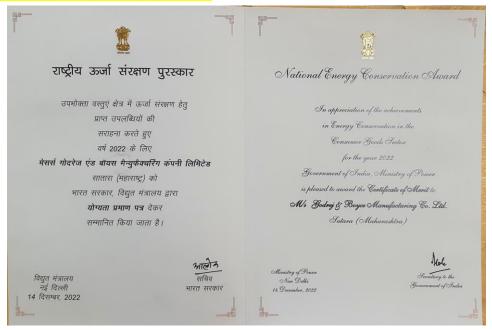
Internal

Signatory to The India Plastic Pact

Greener India Targets (wrt Base Year FY21-22)	Godrey GODRES & BOYCE
INDICATOR	TARGETS (2031-32)
Ch. NOTH TO DESIGN IN PROTOCOLOGY OF THE STATE	+60 % (mva/kwh)
Energy Productivity (EP100 aligned)	(In line with Carbon Intensity Reduction Plan)
Specific Water (all sources)	-25 % (kl/mva)
Water Positivity	2 x
Specific Mnfg waste generation (for each Hazardous & Non-hazardous)	-25 % (mt/mva)
Zero Waste to Landfill (Hazardous & Non-Hazardous)	ZERO
Carbon Intensity	+60 % (mva/tco2e)
Renewable Energy Share in Total Energy	40 %
Net Zero Buildings (Non-Manufacturing - New or Retro fitting)	100 %
Green Supply Chain – GreenCo / SBTi (by Buy Value)	80% Value (Domestic)
1) All Targets aligned to Global Initiatives signed into (EP100, SBTi, Net Zero etc.)
 All G&B Mfg. Locations to be 'GreenCo' certified and Key Suppliers either GreenCo' 	enCo or SBTi signatories
3) Internal Carbon Price at \$5/tCO2	

GreenCo & ISO 50001 Learning

- > Focus on Long term gains along with Short term gains.
- ➤ Be Proactive than Reactive.
- > Improvement in employee capability.
- >Innovation is the key to break the status quo.
- >Cultural improvement in the plant.


Green Makes Business Sense

Awards & Recognition

National Energy Conservation Award 2022

- > The only company from Appliances Manufacturing sector to receive award.
- > Various awards from CII, MEDA, BEE.
- ➤ State level Awards 5 Awards from Maharashtra Energy Development Agency. Three consecutive awards in the competition from MEDA.
- National level Awards 8 Awards from BEE & CII

Thank You